96 research outputs found

    Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement.</p> <p>Results</p> <p>During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble) biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe<sup>2+ </sup>ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe<sup>2+ </sup>ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe<sup>2+ </sup>ion pretreatment, in which delamination and fibrillation of the cell wall were observed.</p> <p>Conclusions</p> <p>By using this multimodal approach, we have revealed that (1) acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2) this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.</p

    Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

    Get PDF
    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.https://doi.org/10.1186/s13068-016-0639-

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Hard color-singlet exchange in dijet events in proton-proton collisions at root s=13 TeV

    Get PDF
    Events where the two leading jets are separated by a pseudorapidity interval devoid of particle activity, known as jet-gap-jet events, are studied in proton-proton collisions at root s = 13 TeV. The signature is expected from hard color-singlet exchange. Each of the highest transverse momentum (p(T)) jets must have p(T)(jet) > 40 GeV and pseudorapidity 1.4 0.2 GeV in the interval vertical bar eta vertical bar < 1 between the jets are observed in excess of calculations that assume only color-exchange. The fraction of events produced via color-singlet exchange, f(CSE), is measured as a function of p(T)(jet2), the pseudorapidity difference between the two leading jets, and the azimuthal angular separation between the two leading jets. The fraction f(CSE) has values of 0.4-1.0%. The results are compared with previous measurements and with predictions from perturbative quantum chromodynamics. In addition, the first study of jet-gap-jet events detected in association with an intact proton using a subsample of events with an integrated luminosity of 0.40 pb(-1) is presented. The intact protons are detected with the Roman pot detectors of the TOTEM experiment. The f(CSE) in this sample is 2.91 +/- 0.70(stat)(-1.01)(+1.08)(syst) times larger than that for inclusive dijet production in dijets with similar kinematics.Peer reviewe

    Search for effective Lorentz and CPT violation using ZEUS data

    Get PDF
    Lorentz and CPT symmetry in the quark sector of the Standard Model are studied in the context of an effective field theory using ZEUS e±p data. Symmetry-violating effects can lead to time-dependent oscillations of otherwise time-independent observables, including scattering cross sections. An analysis using five years of inclusive neutral-current deep inelastic scattering events corresponding to an integrated HERA luminosity of 372 pb-1 at s=318 GeV has been performed. No evidence for oscillations in sidereal time has been observed within statistical and systematic uncertainties. Constraints, most for the first time, are placed on 42 coefficients parametrizing dominant CPT-even dimension-four and CPT-odd dimension-five spin-independent modifications to the propagation and interaction of light quarks

    Search for lepton-flavour-violating decays of the Higgs boson

    Get PDF
    Peer reviewe

    Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

    No full text
    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated
    corecore